Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy.
نویسندگان
چکیده
Peridinin chlorophyll a protein (PCP) from Amphidinium carterae has been studied using absorbance (OD), linear dichroism (LD), circular dichroism (CD), fluorescence emission, fluorescence anisotropy, fluorescence line narrowing (FLN), and triplet-minus-singlet spectroscopy (T-S) at different temperatures (4-293 K). Monomeric PCP binds eight peridinins and two Chls a. The trimeric structure of PCP, resolved at 2 A [Hofmann et al. (1996) Science 27, 1788-1791], allows modeling of the Chl a-protein and Chl a-Chl a interactions. The FLN spectrum shows that Chl a is not or is very weakly hydrogen-bonded and that the central magnesium of the emitting Chl a is monoligated. Simulation of the temperature dependence of the absorption spectra indicates that the Huang-Rhys factor, characterizing the electron-phonon coupling strength, has a value of approximately 1. The width of the inhomogeneous distribution function is estimated to be 160 cm(-)(1). LD experiments show that the two Chls a in PCP are essentially isoenergetic at room temperature and that a substantial amount of PCP is in a trimeric form. From a comparison of the measured and simulated CD, it is concluded that the interaction energy between the two Chls a within one monomer is very weak, <10 cm(-)(1). In contrast, the Chls a appear to be strongly coupled to the peridinins. The 65 cm(-)(1) band that is visible in the low-frequency region of the FLN spectrum might indicate a Chl a-peridinin vibrational mode. The efficiency of Chl a to peridinin triplet excitation energy transfer is approximately 100%. On the basis of T-S, CD, LD, and OD spectra, a tentative assignment of the peridinin absorption bands has been made.
منابع مشابه
Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy.
The peridinin-chlorophyll a-protein (PCP) of dinoflagellates is unique among the large variety of natural photosynthetic light-harvesting systems. In contrast to other chlorophyll protein complexes, the soluble PCP is located in the thylakoid lumen, and the carotenoid pigments outnumber the chlorophylls. The structure of the PCP complex consists of two symmetric domains, each with a central chl...
متن کاملResolving the excited state equilibrium of peridinin in solution.
The carotenoid peridinin is abundant in the biosphere, as it is the main pigment bound by the light-harvesting complexes of dinoflagellates, where it collects blue and green sunlight and transfers energy to chlorophyll a with high efficiency. Its molecular structure is particularly complex, giving rise to an intricate excited state manifold, which includes a state with charge-transfer character...
متن کاملEnergy transfer in the peridinin chlorophyll-a protein of Amphidinium carterae studied by polarized transient absorption and target analysis.
The peridinin chlorophyll-a protein (PCP) of dinoflagellates differs from the well-studied light-harvesting complexes of purple bacteria and green plants in its large (4:1) carotenoid to chlorophyll ratio and the unusual properties of its primary pigment, the carotenoid peridinin. We utilized ultrafast polarized transient absorption spectroscopy to examine the flow of energy in PCP after initia...
متن کاملCarotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state.
Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin-...
متن کاملThe charge-transfer character of the S0 --> S2 transition in the carotenoid peridinin is revealed by Stark spectroscopy.
Peridinin, the carotenoid in the peridinin chlorophyll a protein (PCP), was studied by Stark (electroabsorption) spectroscopy to determine the change in electrostatic properties produced on excitation within the absorption band, in methyl tetrahydrofuran (MeTHF) versus ethylene glycol (EG), at 77 K. Strikingly, a large change in the permanent dipole moment (|Deltamu|) was found between the grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 39 17 شماره
صفحات -
تاریخ انتشار 2000